Skip to content


Complex arithmetic and airplane wings

April 23, 2012

I was once told that the reason that such a shape was so commonly used for aeroplane wings was merely that then one could study it mathemtically by just employing the Zhoukowski transformation. I hope that this is not true!

(R. Penrose, “The Road to Reality”, p.150)

Penrose here talks about a complex holomorphic mapping also known as the aerofoil transformation.

What you need is a cirlce in the complex plane, described by the complex function z, that passes through the point -1+0i. Then the transformation

w = \frac{1}{2}\left(z+\frac{1}{z}\right)

transforms this circle into the cross section of an airplane wing.

Let’s look at this in R. Fortunately, R has some complex number arithmetic already built in. A suitable circle is constructed by

z <- complex(mod=2,argument=seq(0,2*pi,len=100))+(sqrt(0.5)+1i)

and the plot below (Fig. 8.15 in “Road to Reality”) is produced by


Zhoukowski airfoil transform

Maybe at some point I also understand what Penrose means by

… the (idealized) airflow around [the wing] can be directly obtained from that around a ‘wing’ of circular cross-section

Is it true that a vector field on the surface of the circle directly transforms into the wind field around the wing? How do you transform a vector field by the above equation? Does the transformed wind field explain why the plane flies? Would be nice indeed, but this is another post.


From → R, Science

Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s